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Adjacent CpG sites in mammalian genomes can be  
co-methylated owing to the processivity of methyltransferases 
or demethylases, yet discordant methylation patterns 
have also been observed, which are related to stochastic 
or uncoordinated molecular processes. We focused on a 
systematic search and investigation of regions in the full  
human genome that show highly coordinated methylation.  
We defined 147,888 blocks of tightly coupled CpG sites, called 
methylation haplotype blocks, after analysis of 61 whole-
genome bisulfite sequencing data sets and validation with 101 
reduced-representation bisulfite sequencing data sets and 637 
methylation array data sets. Using a metric called methylation 
haplotype load, we performed tissue-specific methylation 
analysis at the block level. Subsets of informative blocks were 
further identified for deconvolution of heterogeneous samples. 
Finally, using methylation haplotypes we demonstrated 
quantitative estimation of tumor load and tissue-of-origin 
mapping in the circulating cell-free DNA of 59 patients  
with lung or colorectal cancer.

Mammalian CpG methylation is a relatively stable epigenetic modi-
fication, which can be transmitted across cell division1 through  
the DNA methyltransferase DNMT1 and dynamically either estab-
lished or removed by DNMT3A, DNMT3B and the tet methylcytosine 
dioxygenase proteins (TET1, TET2 and TET3). Due to the locally 
coordinated activities of these enzymes, adjacent CpG sites on the 
same DNA molecules can share similar methylation status, although 
discordant CpG methylation has been observed, particularly in can-
cer2. The theoretical framework of linkage disequilibrium3, which was 
developed to model the co-segregation of adjacent genetic variants 
on human chromosomes in human populations, can be applied to 
the analysis of CpG co-methylation in cell populations. A number 
of studies related to the concepts of methylation haplotypes4, epi-
alleles5 or epi-haplotypes6 have been reported, although at small 
numbers of genomic regions or limited numbers of cell and tissue 
types. Recent data production efforts, especially by large consortia7,  

have produced a large number of whole-genome, base-resolution 
bisulfite sequencing data sets for many tissue and cell types. These 
public data sets, in combination with additional whole-genome 
bisulfite sequencing (WGBS) data generated in this study, allowed 
us to perform full-genome characterization of locally coupled CpG 
methylation across the largest set of human tissue types available to 
date and to annotate these blocks of co-methylated CpGs as a distinct 
set of genomic features.

DNA methylation is cell-type specific, and the pattern can be 
harnessed for analyzing the relative cell composition of heteroge-
neous samples, such as different white blood cells in whole blood8, 
fetal components in maternal circulating cell-free DNA (cfDNA)9 
or circulating tumor DNA (ctDNA) in plasma9. Most of these recent 
efforts rely on the methylation level of individual CpG sites, and they 
are fundamentally limited by the technical noise and sensitivity in 
measuring single-CpG methylation. Recently, Lehmann-Werman  
et al. demonstrated superior sensitivity with multi-CpG haplotypes 
in detecting tissue-specific signatures in cfDNA10, although this was 
based on the sparse genome coverage of Illumina 450k methylation 
arrays (HM450K). Here we performed an exhaustive search of tissue-
specific methylation haplotype blocks (MHBs) across the full genome 
and proposed a block-level metric, termed methylated haplotype load 
(MHL), for a systematic discovery of informative markers. By apply-
ing our analytical framework and identified markers, we demonstrate 
accurate determination of tissue origin and prediction of cancer status 
in clinical plasma samples from patients with lung cancer (LC) or 
colorectal cancer (CRC) (Fig. 1a).

RESULTS
Identification of methylation haplotype blocks
To investigate the co-methylation status of adjacent CpG sites along 
single DNA molecules, we extended the concept of genetic linkage 
disequilibrium3,4 and the r2 metric to quantify the degree of cou-
pled CpG methylation among different DNA molecules. Methylation 
status of multiple CpG sites in single- or paired-end Illumina 
sequencing reads were extracted to form methylation haplotypes,  
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and pairwise ‘linkage disequilibrium’ of CpG methylation r2 was 
calculated from the fractions of different methylation haplotypes  
(Online Methods).

We started with 51 sets of published WGBS data from human pri-
mary tissues11,12, the H1 human embryonic stem cells, in-vitro-derived 
progenitors13 and human cancer cell lines14,15. We also included an  
in-house-generated WGBS data set from ten adult tissues of one 
human donor. Across these 61 samples (>2,000× combined genome 
coverage) we identified a total of 771 million methylation haplo-
type informative reads that covered 58.2% of autosomal CpGs. The 
uncovered CpG sites were either in regions with low mappability or in 
CpG-sparse regions in which there were too few CpG sites within the 
Illumina read pairs to derive informative haplotypes. We partitioned 
the human genome into blocks of tightly coupled CpG methylation 
sites (which we refer to as MHBs; Fig. 1b), using a r2 cutoff of 0.5 
(Supplementary Note). We identified 147,888 MHBs at an average 
size of 95 bp and a minimum of three CpGs per block, which repre-
sents ~0.5% of the human genome that tends to be tightly co-regu-
lated on the epigenetic status at the level of single DNA molecules 
(Supplementary Fig. 1a,b and Supplementary Table 1). The majority 
of CpG sites within the same MHBs were nearly perfectly coupled 
(r2 ~ 1.0) regardless of the sample type. We found that the fraction of 
tightly coupled CpG pairs (r2 > 0.9; Fig. 1c) slightly decreased over 
CpG spacing from stem and progenitor cells (94.8%; mostly cultured 
cells) to somatic cells (91.2%; mixture of primary adult tissues) to 
cancer cells (87.8%; mixture of CRC tissues and LC cell lines).

The loss of methylation linkage disequilibrium (LD) in cancer cells 
was validated by another independent WGBS data set from primary 
kidney cancer tissues16 (Supplementary Fig. 2). Although the WGBS 
data came from different laboratories, which might have technical 
differences from batch to batch, we found that that methylation LD 
extended further over CpG distance in stem and progenitor cells, 
which is consistent with our previous observations on 2,020 CpG 
islands4 for culture cell lines and with another report17. Notably, in 
cancer samples, we observed a reduction of perfectly coupled CpG 
pairs, which could be related to the pattern of discordant meth-
ylation that was recently reported in variable-methylation regions 
(VMRs)2,18. The cancer-specific decayed MHBs were enriched for 
cancer-related pathways and functions (Supplementary Table 2). 
Nonetheless, the majority of MHBs in cancers still contains tightly 
coupled CpGs (87.8%), allowing us to harness the pattern for detecting 
tumors in plasma. We further validated the co-methylation of these 
MHBs in 101 reduced-representation bisulfite sequencing (RRBS) 
data sets from the Encyclopedia of DNA Elements (ENCODE) and 
in 637 HM450K data sets from The Cancer Genome Atlas (TCGA) 
(Supplementary Fig. 3 and Supplementary Note).

Co-localization of MHBs with known regulatory elements
The MHBs established by the WGBS data represent a distinct type 
of genomic feature that partially overlaps with multiple known 
genomic elements (Fig. 1d). Among all of the MHBs, 60,828 (41.1%) 
were located in intergenic regions, whereas 87,060 (58.9%) regions 
were located in transcribed regions. These MHBs were significantly 
enriched (P < 1.0 × 10−6) in enhancers, super-enhancers, promoters, 
CpG islands and imprinted genes. In addition, we observed a modest 
depletion in the lamina-associated domains (LADs)19 and the large 
organized chromatin Lys9 modifications (LOCK) regions20, as well 
as a modest enrichment in defined topologically associated domains 
(TADs)21. Notably, we observed a strong (26-fold) enrichment in 
VMRs (Fig. 1e), suggesting that increased epigenetic variability in a 
cell population or tissue can be coordinated locally among hundreds 

of thousands of genomic regions22. We further examined a subset of 
MHBs that did not overlap with CpG islands and observed a consist-
ent enrichment pattern (Fig. 1e and Supplementary Fig. 1c), suggest-
ing that local CpG density alone does not account for the enrichment. 
Previous studies on mice and humans23,24 demonstrated that dynami-
cally methylated regions are associated with regulatory regions, such 
as enhancer-like regions marked by acetylation on Lys27 of histone 
H3 (H3K27ac) and transcription-factor-binding sites. In publicly 
available histone-mapping data for human adult tissues, we found 
co-localization of MHBs with marks for active promoters (trimethy
lated Lys4 on histone H3 (H3K4me3) with H3K27ac) but not for 
active enhancers25 (no peak for H3K4me1) (Supplementary Fig. 4). 
We found that enhancers tended to overlap with CpG-sparse MHBs, 
whereas the co-localization with super-enhancers was independent 
of CpG density (Supplementary Fig. 1c). Therefore, MHBs probably 
capture the local coherent epigenetic signatures that are directly or 
indirectly coupled to transcriptional regulation.

Block-level analysis using methylation haplotype load
To enable quantitative analysis of the methylation patterns within 
individual MHBs across many samples, we needed a single metric 
to define the methylated pattern of multiple CpG sites within each 
block. Ideally this metric should not only be a function of the average 
methylation level for all of the CpG sites in the block, but it should 
also be able to capture the pattern of co-methylation on single DNA 
molecules. Therefore, we defined MHL as the weighted mean of the 
fraction of fully methylated haplotypes and substrings at different 
lengths (i.e., all possible substrings; Online Methods). As compared 
to the other metrics used in the literature (methylation level, methyla-
tion entropy, epi-polymorphism and haplotype counts), the MHL is 
capable of distinguishing blocks that have the same average levels of 
methylation but various degrees of coordinated methylation (Fig. 2). 
In addition, the MHL is bounded between 0 and 1, which allows for 
direct comparison of different regions across many data sets.

We next asked whether treating MHBs as individual genomic fea-
tures and performing quantitative analysis based on the MHL would 
provide an advantage over previous approaches that used individual 
CpG sites or weighted (or unweighted) averaging of multiple CpG 
sites in certain genomic windows. Therefore, we clustered 65 WGBS 
data sets (including four additional CRC and LC WGBS data sets15) 
from human solid tissues on the basis of the MHL. Unsupervised clus-
tering with the 15% most-variable MHBs showed that, regardless of 
the data sources, samples of the same tissue origin clustered together 
(Fig. 3a), whereas cancer samples and stem cell samples showed pat-
terns distinct from those of human adult tissues. Principal component 
analysis (PCA) on all MHBs yielded a similar pattern (Supplementary 
Fig. 5). To identify a subset of MHBs for effective clustering of human 
somatic tissues, we calculated a tissue specific index (TSI) for each 
MHB. Feature selection using random forests analysis26 identified a 
set of 1,365 tissue-specific MHBs (Supplementary Table 3) that could 
predict tissue type at an accuracy of 0.89 (95% confidence interval 
(CI): 0.84–0.93), although several tissue types shared rather simi-
lar cell compositions (i.e., muscle versus heart). Using these MHBs,  
we compared the performance between MHL, average methyla-
tion fraction (AMF) in the MHBs and individual CpG methylation 
fractions (IMFs). MHL and AMF provided similar levels of tissue 
specificity, whereas the MHL had lower noise (background: 0.29; 
95% CI: 0.23–0.35) than that in the AMF (background: 0.4; 95%  
CI: 0.32–0.48). Clustering based on individual CpGs in the blocks had 
the worst performance, which might be due to the higher biological or 
technical variability of individual CpG sites (Fig. 3c). Thus, block-level  
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analysis based on the MHL is more advantageous than analysis using 
single-CpG sites or local averaging of multiple CpG sites in distin-
guishing tissue types.

The human adult tissues that we used have various degrees of simi-
larity among each other. We hypothesized that this is primarily defined 
by their developmental lineage and that the related MHBs might reveal 
epigenetic insights relevant to germ-layer specification. We searched 
for MHBs that had differential MHLs among the data sets from the 
three germ layers. In total, we identified 114 ectoderm-specific MHBs 
(99 hypermethylated and 15 hypomethylated), 75 endoderm-specific 
MHBs (58 hypermethylated and 17 hypomethylated) and 31 meso-
derm-specific MHBs (9 hypermethylated and 22 hypomethylated) 
(Supplementary Table 4). Cluster analysis based on layer-specific 

MHBs showed the expected clustering among tissues of the same  
lineage (Fig. 3b). We speculated that some of these MHBs might 
capture binding events of transcription factors (TFs) specific to the 
developmental germ layers. We observed patterns of TF binding  
to layer-specific MHBs that overlapped with ENCODE-reported  
TF-binding events27 (Supplementary Fig. 6). For layer-specific 
MHBs with low MHLs, we identified 53 TFs in mesoderm-specific 
MHBs, 71 TFs in endoderm-specific MHBs and 2 TFs in ectoderm-
specific MHBs. Gene ontology analysis showed that mesoderm-spe-
cific TF-binding events had negative regulatory activity, whereas 
endoderm-specific TF-binding events had positive regulatory activity  
(Supplementary Table 5). For layer-specific MHBs with a high 
MHL, we identified 38 TFs in mesoderm-specific MHBs, 102 TFs in 
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Figure 1  Identification and characterization of human methylation haplotype blocks (MHBs). (a) Schematic overview of data generation and  
analysis. (b) An example of an MHB at the promoter of the gene APC. Tx, transcription; DHS, DNase-I-hypersensitive sites. (c) Smooth scatter  
plots of methylation linkage disequilibrium within MHBs in stem and progenitor cells (left), somatic cells (middle) and cancer cells (right).  
Red indicates relative higher density, and blue indicates relative lower density. The yellow dashed lines and percentages highlight the reduction of  
high LD (r2 > 0.9) with n = 500,000 sampling. (d) Co-localization of MHBs (n = 147,888) with known genomic features. (e) Enrichment of MHBs  
(n = 147,888) in known genomic features.
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endoderm-specific MHB and 145 TFs in ectoderm-specific MHBs.  
Notably, tissues in the ectoderm and endoderm lineage shared few 
bounded TFs, whereas mesoderm tissue shared multiple groups of 
TFs with the ectoderm and endoderm tissues. We identified two 
endoderm-specific high-MHL regions, which are associated with the 
transcription factors ESRRA (also known as ERR1) and NANOG. 
This is consistent with a previous finding that mouse embryonic stem 
cells differentiated spontaneously into visceral and parietal endoderm 
after knocking out Nanog28. The low-MHL regions shared by the mes-
oderm and endoderm might have regulatory functions in the fate 
commitment toward multiple tissues, whereas the ectoderm-specific 
high-MHL regions might induce ectoderm development by suppress-
ing the path toward cells of the immune lineage (Supplementary 
Fig. 6). These observations are indicative of two distinctive ‘push’ 
and ‘pull’ mechanisms in the transition of cell states that have been 
harnessed for the induction of pluripotency by overexpressing line-
age specifiers29.

Methylation-haplotype-based analysis of circulating cfDNA
A unique aspect of methylation-haplotype analysis is that the pattern 
of co-methylation, especially within MHBs, is robust in capturing low-
frequency alleles among a heterogeneous population of molecules or 
cells, in the presence of biological noise or technical variability, such 
as incomplete bisulfite conversion or sequencing errors. To explore 
potential clinical applications, we next focused on the methylation-
haplotype analysis of cfDNA from healthy donors and patients with 
cancer, in which the low amounts of DNA molecules released from 
tumor cells (which we refer to as cancer DNA fraction) potentially 
carry epigenetic signatures distinct from those of white blood cells. 
We isolated cfDNA from the plasma of 75 healthy individuals (NCP), 
29 patients with LC (LCP) and 30 patients with CRC (CCP). Owing to 
the limited amounts of available DNA, we performed single-cell RRBS 
(scRRBS)30 and obtained an average of 13 million paired-end 150-bp 
reads per sample. On average, 57.7% of WGBS-defined MHBs were 
covered in our RRBS data set from the clinical samples.

We queried the presence of tumor-specific signatures in the plasma 
samples, using methylation haplotypes identified from tumor tissues 
as the reference and methylation haplotypes from the NCP samples 
as negative controls. For five LCP and five CCP samples, we obtained 
matched primary tumor tissues and generated RRBS data from 100 
ng of genomic DNA from the tumor. By focusing on the MHBs with a 
low MHL in the blood, we identified cancer-associated highly meth-
ylated haplotypes (caHMHs). Such haplotypes were present in only 
the tumor tissues and the matched plasma from the same patient, 
but not in whole blood or any other non-cancer samples. We found 
caHMHs in all of the plasma samples from the patients with cancer  
(average = 36; interquantile range (IQR) = 17; Supplementary Table 6).  
These caHMHs were associated with 183 genes, some of which 
are known to be aberrantly methylated in human cancers, such as 
WDR37, VAX1 and SMPD1 (Supplementary Table 6). Next we 
extended the analysis to 49 additional plasma samples from patients 
with cancer that had no matched tumor samples, using 75 NCP sam-
ples as the background. On average 60 (IQR = 31) caHMHs were 
identified for each cancer plasma sample (Supplementary Table 6). 
Of note, a substantial fraction (35%) of caHMHs that were called on 
matched tumor–plasma pairs were also detected in the expanded set 
of plasma samples from the patients with cancer. Most of the caH-
MHs were individual specific, whereas several caHMHs were present  
in at least 53% of CCP and 62% of LCP samples (Supplementary 
Fig. 7). The improvement of sampling depth, by using more input 
cfDNA or reducing sample loss during the experiments, will likely 

increase the number of caHMHs that are commonly observed  
in multiple patients.

Next we sought to quantify the cancer DNA fraction in plasma sam-
ples from patients with cancer using deconvolution analysis (Online 
Methods). We used the reference data from the biopsies of primary 
cancers (LC tissue and CRC tissue) and ten healthy tissues and esti-
mated that a predominant fraction of DNA (72.0%; IQR = 40%)  
in the plasma from healthy individuals and patients with cancer 
was contributed by white blood cells, which is consistent with the 
levels reported recently based on shallow WGBS analysis (69.4%)9. 
DNA from the primary tumor and the healthy tissue of origin was 
present at similar levels (2.3% (IQR = 3.7%) and 3.0% (IQR = 4.4%), 
respectively). In contrast, when we applied the same deconvolution 
analysis to plasma samples from healthy individuals, we found only 
residual amounts of cfDNA fragments with a tumor signature (0.17% 
(IQR = 2.9%) for CRC tissue and 1.0% (IQR = 3.1%) for LC tissue), 
which were significantly lower (P = 3.4 × 10−5 for CRC tissue and  
P = 5.2 × 10−10 for LC tissue, by two-sample t-test) than that of 
plasma from patients with cancer. We also found that 23/30 CCP 
samples and only 10/75 NCP samples had detectable contribution 
from CRC tissue, whereas 26/29 LCP samples and 20/75 NCP samples 
had detectable contribution from LC tissue (Supplementary Fig. 8). 
Therefore, cfDNA contains a relatively stable fraction of molecules 
that are released from various normal tissues, whereas tumor cells 
from patients with cancer released DNA molecules at higher levels 
than normal tissues (Supplementary Table 7). The fractions of white 
blood cells observed were lower than those reported previously9 and 
is likely due to the inclusion of more healthy tissue types as the refer-
ences (ten instead of four) in the deconvolution analysis.

Next we searched for a small subset of MHBs among all of the RRBS 
targets that have significantly higher levels of MHL in cancer plasma 
than in normal plasma. We found 81 and 94 MHBs with markedly 
higher MHL for CCP and LCP samples, respectively (Supplementary 
Table 8). The majority (71/81 for CCP samples and 83/94 for LCP 
samples) were also present in at least one of the matched primary 
tumor–plasma pairs. Some of these regions (such as HOXA3) have 
been shown to be aberrantly methylated in LC and CRC. By using 
these MHBs as markers, we found that the diagnostic sensitivity was 
96.7% and 93.1% for CRC and LC, respectively, at the specificities of 
94.6% and 90.6%, respectively. As a comparison, we also performed 

Methylation
frequency (%)

0 100 50 50 50

Methylation entropy 0 0 0.25 1.00 0.25

Epi-polymorphism 0 0 0.500 0.375 0.500

Haplotypes 1 1 2 16 2

MHL(wi = i ) 0 1.0000 0.5000 0.1625 0.1200

Figure 2  Comparison of methylation haplotype load with four other 
metrics used in the literature. Five patterns of methylation haplotype 
combinations (schematic) are used to illustrate the differences between 
methylation frequency, methylation entropy, epi-polymorphism and MHL. 
MHL is the only metric that can discriminate all five patterns.
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a prediction based either on the average methylation level within 
these MHB regions or on single CpG sites. The MHL was found to 
be superior to the average methylation level (sensitivity of 90.0% and 
86.2%, respectively; specificity of 89.3% and 90.6% for CCP and LCP 
samples, respectively) and to the methylation of individual CpG sites 
(sensitivity of 89.6% and 80.6%, respectively; specificity of 89.3% and 
92.0%, respectively).

We then sought to use the information from healthy human tissues, 
primary tumor biopsies and cancer cell lines to improve the detection 
of ctDNA. We started by selecting a subset of MHBs that showed high 
a MHL (>0.5) in primary cancer biopsies and a low MHL (<0.1) in 

whole blood; we then clustered these MHBs into three groups based 
on the MHLs in the plasma samples from healthy individuals and 
patients with cancer, as well as the MHLs from cancer and healthy 
tissues (Fig. 4a,b). We identified a subset (group II) of MHBs that 
had high MHLs in cancer tissues and low MHLs in healthy tissues 
(Supplementary Table 9). Plasma from patients with cancer showed 
a significantly higher MHL in these regions than plasma from healthy 
individuals (P = 1.4 × 10−12 for CCP and P = 6.2 × 10−8 for LCP). By 
computationally mixing the sequencing reads from cancer tissues and 
whole-blood samples, we created synthetic admixtures at various levels  
of tumor fraction. We found that the MHL was 2- to 5-fold higher 
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Figure 3  Tissue clustering based on methylation haplotype load. (a) MHL-based unsupervised clustering of human tissues using the top 15% most-
variable regions. Colored bar indicates the MHL value. (b) Supervised clustering of germ-layer-specific MHBs. (c) Comparison of cluster performance to 
different samples using the MHL, AMF and IMF metrics. MHL exhibits a better signal-to-noise ratio than the AMF and IMF for sample clustering.
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than the methylation level of individual CpG sites across the full range 
of tumor fractions (Supplementary Table 9). Notably, the MHL pro-
vides an additional gain of signal-to-noise ratio (mean divided by 
s.d.) than the AMF value as the fraction of tumor DNA decreased to 
below 10% (Fig. 4c), which is typical for clinical samples. We then 
took the data sets obtained from the individual plasma samples and 
predicted the tumor fraction on the basis of the MHL distribution 
established by computational mixing (Fig. 4a,b). Except for a small 
number (n < 5) of outliers, we observed significantly higher aver-
age MHL values in plasma from patients with cancer than in plasma 
from healthy individuals (Fig. 4d). Note that all group II MHBs were 
selected without using any information from the plasma samples, 
and hence these markers should be generally applicable to other 

plasma samples. Notably, we also found that the estimated tumor 
DNA fractions positively correlated with normalized cfDNA yields 
from the patients with cancer (P = 0.000023; Supplementary Fig. 9 
and Supplementary Table 10).

Recent studies9,10,31 have demonstrated that epigenetic informa-
tion imbedded in cfDNA has the potential for predicting a tumor’s 
tissue of origin. Consistently, we found that tissue-of-origin-derived 
methylation haplotypes were the most abundant fraction in plasma 
from patients with cancer (Supplementary Tables 6 and 7). To predict 
the tissue of origin with quantifiable sensitivity and specificity using 
MHBs, we compiled 43 WGBS and RRBS data sets for ten human  
tissues types that have high cancer incidence rates and identified 
a set of 2,880 tissue-specific MHBs (Supplementary Table 11).  
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Figure 4  Quantitative estimation of the proportion of DNA derived from cancer cells in cell-free DNA, using the MHL of informative MHBs. (a,b) Left, 
heat maps showing the different patterns of MHL in patients with CRC (CCP, n = 30; CCT, n = 13) (a) or LC (LCP, n = 29; LCT, n = 8) (b), as compared 
to that in healthy individuals (NP, n = 26; NLT, n = 4; NCT, n = 4). Three whole-blood (WB) and 47 ‘other healthy tissue’ (ONT) samples were used in the 
analysis; a similar number of plasma samples from healthy individuals (n = 30) were selected, and some of them (n = 4) were excluded because they had 
>30% missing values. Informative MHBs were selected on the basis of the presence of high MHLs in solid tissues from patients with cancer (CT) and 
the absence of MHLs in whole blood (WB). Group II (GII) regions have high MHL values in tissues (MHL > 0.5) and plasma from patients with cancer 
and low MHL values in WB and healthy tissues (MHL < 0.1), and hence, these were selected for further analysis. Bar plots show average MHL values in 
different groups of samples. MHLs in the plasma of patients with CRC (CCP) or LC (LCP) and in the plasma of healthy individuals (NP) were compared 
with a two-tailed Student’s t-test. NCT denotes healthy colon tissues, NLT denotes healthy lung tissues, and ONT denotes other healthy tissues.  
mC, methylcytosine. (c) Comparison between signal-to-noise ratio of MHL and changes in the levels of 5-methylcytosine (5mC) as the reduction of tumor 
DNA fraction. MHL has higher signal-to-noise ratio (mean/s.d. ratio) than individual 5mC levels as tumor fraction decreases. x axis shows the tumor 
fraction in synthetic mixtures. 30 CRC and 29 LC samples were used in the analysis. (d) Estimation of the cancer DNA proportions in CCP (n = 30), LC 
(n = 29) and NP (n = 75) samples.
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We then used these tissue-specific MHBs or subsets of these to predict the  
tissue of origin for the plasma samples from the patients with can-
cer. Although we found many tissue-of-origin-specific MHBs that 
have low MHLs in the plasma from healthy individuals (Fig. 5a), 
the multiclass prediction based on random forests analysis yielded 
limited power. This is likely due to the large number of tissue classes 
(n = 10). We then adopted an alternative approach by counting the 
number of methylated (or high MHL) tissue-specific MHBs in the 
plasma samples and comparing the numbers among all ten tissues to 
infer the most probable tissue of origin. At the cutoff of a minimum 
of ten features per tissue type, we observed an average of 90% accu-
racy for mapping a data set from the primary tissue to its tissue type  
(Fig. 5b). We then applied this method to the plasma data and 
achieved an average prediction accuracy of 82.8%, 88.5% and 91.2% 
for the CCP, LCP or NCP samples, respectively, with fivefold cross-
validation (Fig. 5c, Supplementary Fig. 10 and Supplementary  
Table 12). The misclassified samples were mainly due to the inclusion 
of samples with heterogeneous clinical status: four of five CCP sam-
ples were from patients with metastatic CRC, whereas the fifth was 
in fact tubular adenoma; one LCP sample came from a patient with 
cryptococcal pulmonary infection who later developed lung cancer.

DISCUSSION
Here we extended a well-established concept in population genet-
ics, linkage disequilibrium, to the analysis of co-methylated CpG 
patterns. Although the mathematical representations are identical, 
there are two key differences. First, traditional linkage disequilib-
rium was defined on human individuals in a population, whereas 
in this study the analysis was performed on the diploid genome of 
individual cells in a heterogeneous cell population. Second, linkage 
disequilibrium in human populations depends on the mutation rate, 
frequency of meiotic recombination, effective population size and 
demographic history. The LD level decays typically over the range of 
hundreds of kilobases to megabases. In contrast, CpG co-methylation 

depends on DNA methytransferases and demethylases, which tend 
to have much lower processivity (if any), and, in the case of hemi-
methyltransferases, much lower fidelity than DNA polymerases32. 
Therefore, methylation LD decays over much shorter distance (in tens 
to hundreds of bases), with the exception of imprinting regions. Even 
if longer-read-sequencing methods were used, we did not expect a 
radical change of the block-like pattern presented in this work, which 
is supported by another recent study33. Nonetheless, these short and 
punctuated blocks capture discrete entities of epigenetic regulation in 
individual cells that are widespread in the human genome. This phe-
nomenon can be harnessed to improve the robustness and sensitivity 
of DNA methylation analysis, such as the deconvolution of data from 
heterogeneous samples including cfDNA.

Although we demonstrated a superior power of MHL over sin-
gle-CpG methylation levels or average methylation levels in the clas-
sification and deconvolution using MHBs as features, the accuracy 
was slightly less than what has been reported on the deconvolution 
of blood cell types. One major difference is that each reference tissue 
type itself is a mixture of multiple cell types that might share various 
degrees of similarity with another reference tissue type. Furthermore, 
most solid tissues also contain blood vessels and blood cells. Given 
such background signals, the accuracy that we achieved is promising 
and will be further improved once reference methylomes of pure adult 
cell types are available.

Practically, the amount of cfDNA per patient is rather limited, typi-
cally in the range of tens of nanograms. We therefore used 1–10 ng per 
patient for the scRRBS experiments. After considering the material 
losses during bisulfite conversion and library preparation, as well as 
the sequencing depth, we calculated that there were on average five 
genome equivalents in each data set. Our data set is very sparse, espe-
cially when the fraction of tumor DNA was low. Hence, the chance 
of finding cancer-specific methylation haplotypes in a specific region 
consistently across many samples is low. This is likely the reason that 
marker sets selected using random forest analysis had limited sensitivity  
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and specificity. However, epigenetic abnormalities tend to be more 
widespread across the genome (as compared to somatic mutations), 
and hence, we managed to integrate the sparse coverage across many 
loci to achieve accurate prediction by direct counting of methyl-
ated haplotypes within the informative genomic regions. Notably, 
we showed that, in patients with cancer, plasma contains circulating 
DNA fragments from both normal and malignant cell types that are 
detectible with methylation haplotyping. This allowed us to detect 
the presence of cancer and map the tissue or organ of tumor growth. 
Of note, when we combined all of the data from primary tumors and 
cancer cell lines as a ‘pan-cancer’ tissue and included it as the eleventh 
reference for tissue-of-origin mapping, the detection sensitivity and 
specificity was further improved (Supplementary Figs. 11 and 12), 
suggesting that a joint analysis of the cancer signature and the tis-
sue-of-origin signature is more sensitive than focusing on the cancer 
signature alone. In summary, methylation haplotyping in plasma is 
a promising strategy for the early detection of a tumor and its pri-
mary growth site, as well as for the continuous monitoring of tumor 
progression and metastasis to multiple organs. With more plasma 
samples from patients at multiple clearly defined cancer stages and 
from healthy controls, it is possible to further improve the prediction 
sensitivity and specificity to a level adequate for clinical testing.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Samples from healthy individuals and patients with cancer. Ten human 
primary tissues were purchased from BioChain Institute, Inc. Tissues from 
cancer patients and plasma samples were purchased from the UCSD Moores 
Cancer Center, and plasma samples from healthy individuals were obtained 
from the UCSD Shirley Eye Center under Institutional Review Board (IRB) 
protocols approved by UCSD Human Research Protections Program (HRPP). 
All data sets generated in this study or obtained from public databases are 
listed in Supplementary Table 13.

Generation of DNA libraries for sequencing. Extracted genomic DNA was 
prepared for bisulfite sequencing, using published protocols. For whole-genome 
bisulfite sequencing (WGBS) and reduced-representation bisulfite sequencing 
(RRBS), the DNA fragments were adapted to barcoded methylated adaptors 
(Illumina). For WGBS, the adapted DNA was converted using the EZ DNA 
Methylation Lightning kit (Zymo Research) and then amplified for ten cycles 
using iQ SYBR Green Supermix (Bio-Rad). For RRBS, the adapted DNA was con-
verted using the MethylCode Bisulfite Conversion kit (Thermo Fisher Scientific) 
and amplified using the PfuTurboCx polymerase (Agilent) for 12–14 cycles. 
Libraries were pooled and size-selected using 6% TBE polyacrylamide gels. 
Libraries were sequenced using the Illumina HiSeq platform for paired ends for 
100–111 cycles and the Illumina MiSeq platform for paired ends for 75 cycles.

Read mapping. WGBS and RRBS data were processed in similar fashions. 
We first trimmed all paired-end (PE) or single-end (SE) fastq files using trim-
galore version 0.3.3 to remove low-quality bases and biased read positions. 
Next, the reads were encoded to map to a three-letter genome via conver-
sion of all cytosines to thymidines or all guanines to adenines for the reads 
that seemed to be from the reverse-complement strand. Then the reads were 
mapped using BWA mem version 0.7.5a, with the options ‘-B2 -c1000’ to 
both the Watson-strand- and Crick-strand-converted genomes. The align-
ments with mapping-quality scores of <5 were discarded, and only reads with 
a higher best-mapping-quality score in either the Watson or Crick strand were 
kept. Finally, the encoded read sequences were replaced by the original read 
sequences in the final BAM files. Overlapping paired-end reads were also 
clipped with the bamUtils clipOverlap function.

Methylation haplotype blocks (MHBs). The human genome was split 
into non-overlapping ‘sequenceable and mappable’ segments using a set of  
in-house-generated WGBS data from ten tissues of a 25-year adult male donor. 
Mapped reads from WGBS data sets were converted into methylation haplo-
types within each segment. Methylation linkage disequilibrium was calculated 
on the combined methylation haplotypes. We then partitioned each segment 
into methylation haplotype blocks (MHBs). MHBs were defined as the genomic 
region in which the r2 value of two adjacent CpG sites is no less than 0.5.

High-methylation linkage regions defined using ENCODE and TCGA data. 
We collected RRBS data from the ENCODE project (downloaded from the 
UCSC Browser) and HM450K data from the TCGA project. Pearson correla-
tion coefficients were calculated between adjacent CpG sites across all samples. 
The Takai and Jones’ sliding-window algorithm34 was used to identify blocks 
of highly correlated methylation. We set a 100-bp sliding window starting at 
a CpG position and moved the window downstream when there were at least 
two probes in the window. We calculated the total number of probes in the 
extended regions until the last window that did not meet the criteria. Regions 
covering at least four probes were defined as CpG-dense regions, and the 
average Pearson correlation coefficients among all of the probes in the cancer 
and healthy samples were calculated. We then performed simulation analysis 
to generate 10,000 virtual individuals with 1,000 haplotypes to investigate the 
relationship between the LD at the single-read level and the correlation coef-
ficients of the average 5mC levels between two CpG sites, which was based 
on random sampling of ten different methylation haplotypes from each of the 
1,000 simulated individuals.

Enrichment analysis of methylation haplotype blocks for known functional 
elements. Enrichment analysis was performed by random sampling as previously  
described35. Genomic regions with same number of MHBs (147,888), fragment  

length distribution and CpG ratios were randomly sampled within the map-
pable regions (genomic regions meeting Center for Genomic Regulation (CRG) 
mappability criteria and minimum 10× depth of coverage in our WGBS data 
set) and repeated 1,000,000 times. Statistical significance was estimated based 
on the empirical p-value (P). Fold changes (enrichment factors) were calculated 
as the ratios of observed values to expected values. Exons, introns, 5′ untrans-
lated regions (UTRs) and 3′ UTRs were collected from the UCSC database. The 
definition of enhancers was based on Andersson et al.36, the definition of super-
enhancers was derived from Hnisz et al.37, and the definitions of promoter 
regions was based on the definition by Thurman et al.38. All of the genomic 
coordinates were based on the GRCh37/hg19 human genomic sequence.

Methylation haplotype load (MHL). We defined a methylated haplotype load 
(MHL) for each candidate region, which is the normalized fraction of methyl-
ated haplotypes at different lengths: 
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×
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where l is the length of haplotypes, and P(MHi) is the fraction of fully succes-
sive methylated CpGs with i loci. For a haplotype of length L, we considered 
all substrings with length from 1 to L in this calculation. wi is the weight for 
i-locus haplotype. Options for weights are wi = i or wi = i2 to favor the contribu-
tion of longer haplotyes. In the present study, wi = i was applied.

Following the concept of Shannon entropy H(x), methylation entropy (ME) 
for the haplotype variable in specific genomic regions were calculated with 
the following formula: 
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for a genome region with b CpG loci and n methylation haplotype; P(Hi) 
represents the probability of observing methylation haplotype Hi, which can 
be calculated by dividing the number of reads carrying this haplotype by the 
total reads in this genomic region. ME is bounded between 0 and 1, and it can 
be directly compared across different regions genome wide and across multiple 
samples. ME values were widely used in the measurement of variability of DNA 
methylation in specific genomic regions39.

Epipolymorphism40 was calculated as 

ppoly = −
=
∑1 2

1
Pi

i

n

where Pi is the frequency of epi-allele i in the population (with 16 potential epi-
alleles representing all possible methylation states of the set of four CpGs).

Developmental germ layers and tissue-specific MHBs. To investigate the 
germ-layer and tissue-specific MHBs, the group-specific index (GSI) was 
defined. An empirical threshold GSI > 0.6 was used to define layer- and tissue-
specific MHBs. Layer-specific MHBs were selected again to show the ability to 
distinguish different development layers. Tissue-specific MHBs were further 
used for tissue mapping and cancer diagnosis. 
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where n indicates the number of the groups, MHL(j) denotes the average of 
the MHL of jth group, and MHLmax denotes the average of MHL of the highest- 
methylated group.
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Genome-wide methylation haplotype load matrix analysis. The MHL was 
calculated for all MHBs on each sample. The MHBs with the top 15% MHL 
were included in the heat map to investigate the tissue relationship. The 
Euclidean distance and Ward.D aggregation were used in the heat map plot  
(R, gplots package; https://cran.r-project.org/package=gplots). PCA (R package  
prcomp; https://www.r-project.org/) was conducted with the default setting of 
the corresponding R packages. Before the PCA, raw data were quantile-nor-
malized within same tissue and cell groups. Standardization (scale) and batch-
effect elimination (the Combat algorithm41) were also applied to decrease the 
random noise. MAF and IMF were extracted from BAM files with customized 
PileOMeth software (https://github.com/dpryan79/PileOMeth). Differential 
MHL analysis between plasma from patients with cancer and healthy individuals  
was based on a two-tailed Student’s t-test or a Wilcoxon rank-sum test. 
Correction for multiple testing was based on the false discovery rate (FDR). 
Statistical variations were estimated among different groups, and therefore, 
one-way analysis of variance (ANOVA) analysis could be conducted.

Deconvolution analysis of simulated and experimental data. Deconvolution 
analysis was performed on simulated and experimental data sets. The decon-
volution references were constructed on data from healthy human primary 
tissues, whole blood, CRC tissues and LC tissues. For the simulation analysis, 
methylation haplotypes from CRC tissue and whole blood were randomly 
mixed to generate a series of synthetic data sets with CRC tissue factions 
ranging from 0.1% to 50%. We then plotted the expected and observed CRC 
tissue factions. Although MHL is a nonlinear metric, when mixing CRC tissue 
and whole blood, we found that the deconvolution result was accurate after 
log-transformation of the MHL values (median root-mean-square error < 5%),  
which was within the acceptable region of the deconvolution method43 when 
the contribution of colorectal fraction was less than 20%. Tissue-specific MHBs 
were selected features for deconvolution based on non-negative decomposi-
tion with quadratic programming9,42,43. MHL values were log-transformed 
before deconvolution.

Highly methylated haplotype in plasma from individuals with cancer 
and in normal tissues. Highly methylated haplotype (HMH) was defined as  
the methylation haplotype that have at least two methylated CpGs in the haplo-
type. Cancer-associated highly methylated haplotypes (caHMH) were the ones 
found in only plasma samples from patients with cancer but were absent in the 
plasma samples from healthy individuals and in healthy tissues. For the analy-
sis of matched tumor–plasma data from the same individuals, caHMHs were 
the HMHs present in both the plasma and matched primary cancer tissues, 
but absent in all healthy samples. In the analysis of plasma samples with no 
matched primary tumor tissue, we identified caHMHs by subtracting HMHs 
found in plasma from patients with cancer from those present in all healthy 
tissues and plasma samples from healthy individuals.

Simulation of MHL in plasma mixture, and comparison between MHL and 
5mC in the plasma mixture. In evaluating caHMHs as potential markers for 
non-invasive diagnosis, we hypothesized that cfDNA in plasma is a mixture 
of DNA fragments from cancer cells and whole-blood cells at different ratios 
(cancer DNA fragments from 0.1% to 50%). We created synthetic mixtures 
by random sampling of haplotypes in the group II regions from cancer and 
whole-blood data sets at different ratios, and we repeated the sampling analysis 
described above 1,000 times to empirically determine the mean and variance of 
MHL and 5mC levels at different fractions of cancer DNA. Once an empirical 
‘standard curve’ was constructed, we then used it to estimate the fraction of 
cancer DNA in the plasma samples. In addition, we assessed the relationship 
between estimated cfDNA fraction and log-transformed normalized plasma 
cfDNA yield by linear regression. Signal-to-noise ratio to MHL and 5mC was 
conducted with the 1,000-time sampling procedure, and then the average esti-
mated tumor fraction, as well as the variation (s.d.), were recorded, and the 
ratio was calculated to measure the performance of the metric.

Mapping cancer tissue of origin with plasma DNA. The workflow for data 
analysis is illustrated in Supplementary Figure 13. Tissue-specific MHBs (tsM-
HBs) were identified by a two-tailed t-test with FDR correction. Additional 
statistical analyses with MHL were also conducted by two-tailed t-tests unless 

stated explicitly. Predictions on plasma from individuals with CRC or LC, or 
from plasma from healthy individuals, were performed with random forecast, 
so test and validation samples were independent. Tissue-of-origin prediction 
was performed using a tsMHB counting strategy, in which the tissue of origin 
of the plasma was assigned to the reference group with the maximum number 
of tsMHB fragments (assignment by maximum likelihood). Specifically, in the 
first stage, the tissue-specific MHBs were identified with the WGBS and RRBS 
data sets from solid tissues in the training samples. tsMHBs (each tissue has 
~300 MHBs) were identified with the cutoff GSI > 0.1. In the second stage, 
the predictions were validated with our own RRBS data set, which included 
plasma samples from 30 patients with CRC, 29 patients with LC and 75 healthy 
individuals. In the test data set, we separated the samples into five parts so 
that fivefold cross-validation could be applied to estimate the stability of the 
prediction, and the number of tissue-specific MHB features were iterated from 
50 to 300. The minimum number of features was selected when the accuracy 
for plasma from patients with cancer was >0.8 and the accuracy for plasma 
from healthy individuals was >0.9, as we required high specificity in clinical 
applications. The selected number of features were used in the remaining sam-
ples to measure the accuracy of tissue-mapping. The variations of sensitivity, 
specificity and accuracy in different subsets of fivefold cross-variation were 
low (training data set s.d. < 0.04, and testing data set s.d. < 0.14).

Joint analysis of tumor and normal tissue for non-invasive cancer detection 
in plasma. Cancer-specific markers (GSI scores derived from eight CRC, eight 
LC and two kidney cancer (KC) tumor samples) and tissue-specific markers were 
integrated and considered as a ‘pan-cancer tissue’; then, together with the data 
sets from ten normal tissues, they were applied for tissue- and reference-specific 
MHB identification. The top 200 MHBs specific to each of the 11 reference tissues 
were selected as the prediction features. The distribution for the reference-specific  
MHBs in plasma samples from 75 healthy individuals, 30 patients with CRC 
and 29 patients with LC were constructed for 11 references. The P value of each 
reference in the plasma could be inferred by comparison with the background 
distribution of the reference in plasma from healthy individuals. Meanwhile, 
tissue of origin was assigned by maximum z-scores among different references. 
With leave-one-out cross-validation on plasma from healthy individuals, the 
type-1 error (FDR) for the corresponding z-score threshold and sensitivity were 
estimated. Finally, setting a predefined z-score threshold could be also used 
for tissue-of-origin assignment; meanwhile, a receiver-operating-characteristic 
(ROC) curve was built to show the performance of the predictors.

Code availability. All codes and scripts developed for this study are available 
for non-commercial use at http://genome-tech.ucsd.edu/public/MONOD_
NG_TR44413/.

Data availability. WGBS and RRBS data are available at the Gene Expression 
Omnibus (GEO) under accession GSE79279. 
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